原生动物出现在什么时候?肉足虫的培养方法

admin|
148

原生动物出现在什么时候

原生动物门 Protozoa 动物界的一门,最原始、最简单、最低等的单细胞动物。每个原生动物都是一个完整的有机体。 原生动物能分布在海洋、陆地、空气中。寄生的种类,几乎所有的多细胞动物和植物都能被寄生。此外,还有附生、共生、重寄生的类型。目前已描述的原生动物约6.8万种,其中一半是化石种类 ,现生种类中,营自由生活的占2/3,寄生生活的占1/3。 原生动物的形状变化很大。有原生质随意流动、形状不定的变形虫,有结构精巧的放射虫和有孔虫。原生质体外面有一层细胞膜,有些鞭毛虫,肉足虫、纤毛虫有硅质、钙质、纤维质的外壳。细胞质中含有各种颗粒(油滴、淀粉、副淀粉、色素等)和各种细胞器。具有维持生命和延续后代所必需的一切功能,如行动、营养、呼吸、排泄和生殖等。与鞭毛虫、肉足虫、纤毛虫相应的运动胞器有鞭毛、伪足和纤毛。孢子虫是寄生的,借身体的屈曲、滑动等方式移动。 繁殖和生命周期 原生动物的生命周期包括生殖期和孢囊。生殖期可分为无性生殖和有性生殖。大多数原生动物无性生殖用二分裂法。有性生殖有融合、接合、自体受精和假配3种。 寄生原生动物的大多数孢子生活史包括3个时期:裂体生殖期、配子生殖期和孢子生殖期。有明显的无性世代与有性世代的交替。 生态 影响原生动物的环境因子有温度、溶解氧、溶解的二氧化碳、盐度、光、底质、水流、风浪等。 系统发育和分类 一般认为原生动物的祖先是一些古老的“植物-动物”性的类群 ,称为古代的植鞭毛虫。经典的分类把原生动物门分为4个纲——鞭毛虫纲、肉足虫纲、孢子虫纲和纤毛虫纲。①鉴于许多鞭毛虫的生活史中有变形期,许多肉足虫的生活史中有鞭毛期,有的种类本身就兼有鞭毛和伪足,所以把两大纲合并为肉鞭动物亚门。②传统的孢子虫纲内有些种类的生活史中并不出现孢子,其顶端有一个复杂的亚显微结构——由极环、类椎体、表膜下微管、微孔、棒状体、微丝组成的顶复体,因而将其独立为顶复动物亚门,与微孢子虫亚门、粘体动物亚门、囊孢子虫亚门并列。③传统的分类中把盘蜷虫类放在肉足纲内。现已证明它的丝网并不是伪足,而是坚硬的、无生命的丝,因而独立为盘蜷动物亚门。 意义 已知有30种原生动物直接侵袭人体。土壤原生动物能帮助植物碎片分解成有用的腐殖质。有孔虫和放射虫都有完整的化石保存,可用以鉴定地层年龄和划带。它们也是很好的海流水团动力学的指示生物。等辐骨放射虫利用硫酸锶来制造骨骼,因此可作为鉴测海洋放射物质污染的指示生物。原生动物在生物学的细胞、遗传、生理、生物化学等领域中常被用作实验材料。 原生动物是动物界重最低等的一类真核单细胞动物,个体由单个细胞组成。与原生动物相对,一切由多细胞构成的动物,称为后生动物。原生动物个体一般微小,绝大多数仅在2-5mm之间。原生动物生活领域十分广阔,可生活于海水及淡水内,底栖或浮游,但也有不少生活在土壤中或寄生在其它动物体内。原生动物一般以有性和无性两种世代相互交替的方法进行生殖。 主要根据运动的胞器,原生动物可分为: 鞭毛虫纲(Mastigophora) 身体前端着生一个鞭毛或多根鞭毛。有些体内具色素体,能借日光能量,自己制造食物,营植物性(自养)营养,属于植鞭毛类(phytofla gellates);另一类是体内不具色素体的异养类型,称为动鞭毛类(zoo flagellates)。植鞭毛类能分泌硬体,因此化石较多。动鞭毛类不能分泌硬体,至今未见化石,虽然其化石可能在先寒武纪即已存在。 纤毛虫纲(Giliata) 以密生于体外的纤毛运动。现生的Paramecium(草履虫)为本纲的典型代表,铃纤虫是本纲的重要化石。 孢子虫纲(Sporozoa) 无运动胞器,以孢子繁殖,未见化石。 肉足虫纲(Sarcodina) 肉足纲运动胞器为伪足,由细胞质向外突出而成,有叶状、丝状、枝状、网状和针状等。多数能分泌外壳,是原生动物中化石最多的一个纲。 有孔虫亚纲——蜓有孔虫目 放射虫亚纲 与人的关系 原生动物不仅对了解动物演化是重要的,而且和人生的关系也比较密切。比如寄生的种类直接对人有害。还有些对国民经济有直接关系,一些寄生在害虫体内的原生动物,也是研究害虫生物防治的材料。自由生活的原生动物。有些种类能污染水源,造成赤潮危害渔业。另方面,有的种类可以作为有机污染的指标动物。大多数的植鞭毛虫。纤毛虫和少数的根足虫是浮游生物的组成部分,是鱼类的自然饵料。海洋和湖泊中的浮游生物又是形成石油的重要原料。有孔虫。放射虫的壳对地壳形成有意义。因此它们又是探测石油矿的标志。 此外,原生动物结构较简单,繁殖快,易培养,因此是研究生物科学基础理论的好材料,如眼虫、变形虫、草履虫。生物科学基础理论中,细胞生物学是一个重要的部分,而原生动物本身就是单个细胞,因此在揭示生命的一些基本规律中,原生动物已经显示并将耍显示其更大的科学价值。 系统发展 原生动物是单细胞动物,要讨论原生动物的系统发展必然要涉及到生命起源和细胞起源的问题。从原则上讲,在亿万年的发展过程中,首先是由无机物发展到简单的有机物由简单的有机物发展到复杂的有机物,发展成像蛋白质、核酸等那样复杂的大分子,发展出具有新陈代谢机能、但还无细胞结构的原始生命。这是最初的生活物质、生命形态。以后又经过漫长的年代,才由非细胞形态的生活物质发展成为有细胞结构的原始生物。由原始生物近代发展分化出原始的动物和植物。进而发展成现代的形形色色的原生动物。 在原生动物这四纲中哪一类是最原始的:过去有些人认为肉足纲变形虫这一类动物是最原始的。因为其结构简单,可是它是吞噬性营养,它需要吃其他原生动物或植物等,所以它不会是最早出现的。纤毛纲结构比较复杂,且为吞噬性营养,也不可能是最早出现的。孢子纲的动物全是寄生的,寄生的种类是由独立生活的种类发展而来的,因此也不可能是最早出现的。只有鞭毛纲具有3种营养方式,因此一般认为鞭毛细是原生动物中最原始的一纲。 在鞭毛纲中到底是哪一类最早出现的这个问题还有争论。过去有些人认为最目出现的是有色鞭毛虫。因为它可以自己制造食物,但因为色素体结构比较复杂,不可能想象最早出现存如此复杂的结构。所以又有些人认为最早出现的不是有色鞭毛虫,而是无色渗透性营养的鞭毛虫,因为无色渗透性营养的鞭毛虫一般构造比较简单,这种说法看来可以被接受。因为物质的发展是由简单到复杂,而在单细胞动物出现以前,已经存在着有机物的条件,当然并不是说由现在的无色鞭毛虫发展来的,而可能是有些类似现在的无色鞭毛虫,假定把它叫做原始鞭毛虫。由原始鞭毛虫经过漫长的岁月,形成现在的形形色色的鞭毛虫。现在有人认为领鞭毛虫是最原始的,它是所有多细胞动物的祖先。 肉足纲也是从原始鞭毛虫发展来的,因为很多肉足虫如有孔虫,其配子具鞭毛,根据生物发生津,说明其祖先是具鞭毛的。又某些种类如变形鞭毛虫具鞭毛和伪足,这可说明鞭毛虫与肉足虫亲缘关系密切。纤毛虫可能是从原始鞭毛虫发展成鞭毛虫的过程中,又分出一支形成的,因为纤毛与鞭毛的结构是一致的说明这二纲的关系较近。孢子纲因全为寄生的,追溯其来源较困难。大致可看出有两个来源如疟原虫、球虫,其配子都具鞭毛,可能来源于鞭毛纲,而粘孢子虫,其营养体全为变形体,可能来源于肉足纲。

肉足虫的培养方法

(5011Sarcodina)生活在土层和土表凋落物中,是土壤动物群落中的组成部份,对研究土壤生物区系和群落结构有一定意义。其主要特征是大膜薄,身体变形,难以制成永久性标本,分类鉴定主要依据活体观察.国内研究工作尚少。从中国科学院上海昆虫研究所提供的浙江夭目山土 教学中,经常需要肉足虫,如变形虫(Amoeba)等,但肉足虫受季节影响取材较困难,即使采到,种类和数量均较少,远远不能满足实验课需要。经多次试验,终于摸索出一种十分有效的方法,现将培养过程及注意事项介绍如下:(1)A、B、C液配制: A液:CaCl2·2H2O0.433g,KCl0.162g无菌水100ml B液:K2HPO40.512g无菌水100mlC液:MgSO4·7H2O0.28g无菌水100ml(2)培养基配制将lg莴苣叶粉末加A、B、C液各1ml,再加无菌水至1000ml,煮沸,过滤。再将所得滤液配成1.5%琼脂培养液,经高压灭菌后,分装到培养皿中(约1/3高度)。冷却用。(3)土壤样品采集取少许表层园土或林土,取土时需将大型动物及枯枝落叶除去,携回实验室备用。(4)接种①土壤浸出液制备:称2g土壤,加4ml无菌水振荡1min;静置;取浸出液即可。②将冷却好的培养基从中划线分成两部分。一半滴几滴土壤浸出液(互不联结),另一半撒上土壤样品少许,再滴入土壤浸出液使成一薄的水层。注意:水太多不利肉足虫生长。置于培养箱中于25℃恒温避光倒置培养。每隔一段时间,加数滴土壤浸出液,以防干燥。接种24h后,便有肉足虫长出。观察时可将培养皿直接置于显微镜下镜检,或在解剖镜下挑出虫体单独观察该法培养的肉足虫种类非常多。叶状、丝状、轴状伪足的都有。在培养后期,还有不少有壳的种类。一旦接种好后,只要维持培养皿内(实为琼脂表面)湿润,便可长期取用,十分方便。在此,特别推荐学生将培养皿直接置于显微镜下观察。这样可同时观察到许多形态各异、种类不同的肉足虫,且都处于活动状态。该法培养时,鞭毛虫和毛虫一般不长出,避免了干扰

什么是伪足

伪足 伪足(weizu)无脊椎动物、原生动物门、肉足纲动物的临时性运动细胞器。当动物运动时,细胞表面能伸出1个或数个长短不一的突起,这是由于细胞质流动而形成的,整个身体可随突起伸出的方向向前移动。伪足无固定的形状、部位和数目,一般呈叶状、指状、针状、丝状等。伪足除有运动功能外,还有帮助摄食等功能。如变形虫(Amoeba),痢疾内变形虫(Entamoebahistolytica)等,遇到食物可用伪足包围、裹入,并进行消化吸收。